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Abstract. We present simple calculations which show that the incommensurability upon doping 
and the width of the magnetically ordered phase in Mort-Hubhard insulators depend strongly on 
the location of the holelelenron pockets in the Brillouin zone. For LaShuO systems, we Found 
the pockets at (iri/2, *n/Z). in which c3se the corrections to the antiferromagnetic spin stiffness 
rapidly grow with doping and destroy commensume spin ordering even at a very small doping. 
On the other hand, in NdCeCuO, the hole pockets are located at (n, 0) and the symmetry-related 
points. in which case the corrections to the stiffness scale linearly with the density of carriers 
and do not destroy commensurate spin ordering. For YBCO systems. the situation is less certain, 
but our results favour hole pockets at ( ~ 1 2 ,  n/2). We also briefly discuss the tendency towards 
phase separation. 

1. Introduction 

The intense interest in understanding the properties of high-temperature superconductors 
initiated theoretical research on the behaviour of antiferromagnetic insulators upon 
doping. The parent compounds of high-T, materials are well described as Heisenberg 
antiferromagnets. Upon hole doping, long-range antiferromagnetism rapidly disappears and 
the systems eventually become metallic superconductors. The same transformation occurs 
in electron-doped materials but at substantially larger doping concentrations. The behaviour 
of the antiferromagnetic insulators upon doping has attracted a lot of interest over the past 
few years as the exchange of antiferromagnetic paramagnons is at least one of the relevant 
pairing interactions between holes 111. There are several fundamental issues related to 
doped antiferromagnets, one of which is whether magnetic correlations remain peaked at 
QO = (n, n) upon doping, or shift to incommensurate momenta. Shraiman and Siggia first 
pointed out [Z] that if the dispersion of vacancies has a minimum at (+r/2, =!=n/2), then 
the dopants introduced into a commensurate nearest-neighbour antiferromagnet give rise to 
a long-range dipolar distortion of the staggered magnetization which may lead to a spiral 
spin configuration. 

It has been recently argued [3, 4, 51 that the values of hopping integrals in electron 
and hole-doped 214 materials are nearly the same: t - 0.4 eV, f’ - -0.2r, where t’ is 
the nearest-neighbour hopping. Despite this, the incommensurability upon doping has been 
found only in LaSrCuO compounds [6] while the dynamical structure factor in the doped 
NdCeCuO remains peaked at (n, n) [5,7]. Moreover, experimentally. long-range magnetic 
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order in LaSrCuO disappears even at 3 4 %  doping, while in NdCeCuO it survives up to 
12% doping. 

The goal of the present paper is to show that the contrasting magnetic dynamics in 
the two 214 systems near half filling is related to a different location of the hole pockets. 
Namely, we will argue that in La-based materials, the pockets are located at (&a/Z, h / 2 )  
while in Nd-based materials doped electrons occupy pockets centred around (0, in) and 
(hr, 0). This, as we show below, gives rise to a completely different spin dynamics in the 
two materials: the commensurate (a, n) state rapidly becomes unstable in LaSrCuO. but 
survives in NdCeCuO. 

We will also discuss the location of the hole pockets in YBazCusOs, where the next- 
nearest neighbour hopping amplitude is relatively large, t’ - -0.5t. Our results for the 
Hubbard model show that for t ‘ / t  - -0.5 and J / t  - 0.4, the mean-field hole dispersion 
is nearly degenerate along k, = k, and has a flat minimum at (n, R). However, self- 
energy corrections still favour pockets at (aj2, n/2) and are likely to overshadow the small 
difference between the mean-field quasiparticle energies at (n/2, n/2) and (n, a). In this 
situation, the spin dynamics of LaSrCuO and YBaCuO near half filling are nearly identical, 
and differ only in the metallic phase where the Fermi surface is large, and, in the case of 
YBaCuO. is centred at (a, a). Notice, however, that cluster calculations for the t-t‘-J 
model reported hole pockets at (n, n) for the same ratios of parameters [5, 111. If it is 
actually the case for YBaCuO, the spin dynamics very near half filling will be very similar 
to that in the electron-doped materials (see below). 

The bulk of our consideration is presented in the next section. We will first briefly 
review the spin-density-wave theory for the Hubbard model near half filling, then find the 
location of the hole pockets for the hole- and electron-doped materials, and next show how 
the different location of the hole pockets gives rise to a contrasting magnetic behaviour near 
half filling. Finally, we discuss the tendency towards domain-wall formation upon doping. 
Our conclusions are presented in section 3. 
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2. Hubbard model with next-nearest-neighbour hopping 

We consider the one-band Hubbard model given by 

Here j and j ’  label the nearest and the next-nearest neighbours, respectively, and n = ctc is 
the particle density. We will use the spin-density-wave formalism [12] which, as has been 
shown in a number of papers [12, 13, 14, 15, 16, 17, 181, is a good starting point for the 
calculations close to half filling. Below we mostly restrict ourselves to the simplest mean- 
field calculations. This last restriction can be formally justified if one extends the Hubbard 
model to a large number of orbitals at a given site, nc = 2s [19], and restrict it to the leading 
term in the 1 jS  expansion. This mean-field theory is meaningless for the nearest-neighbour 
Hubbard model because of the accidental degeneracy in the hole spectrum which is lifted 
only by 1/S corrections (see the discussion below). However, the non-zero t’ eliminates 
the accidental degeneracy even at the mean-field level. In this situation, we expect that the 
corrections to the mean-field results renormalize the parameters of the model, which will 
be important for our analysis of YBaCuO, but do not give rise to any new physics of the 
insulating phase. 
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2.1. SDW theory at halffilling 

We now briefly discuss the key points of the SDW formalism at half filling. This formalism 
has been applied several times to the t! = 0 model. First, we assume that at half filling, the 
2D Hubbard model has a commensurate antiferromagnetic ground state. This implies that, 
e.g., the z component of the spin-density operator 

S(q) = ; Caf+q.u%P&P 
k 

has a non-zero expectation value at q = eo. We then use the relation 

( C a f + Q , + a k . T )  = - ( x a k + Q , L a k . J - )  = 
k k 

to decouple the quartic term in (1). After decoupling, the quadratic Hamiltonian takes the 
following form: 
H M f  = C ’ & a : , a k ,  + a i + Q a r a a + Q , o )  + C’E.+:.,ak, - a k + Q o @ k + Q o r )  t 

k k 

(2)  - C ’ A  % n ( o ) ( a k , a k + Q w  t + a k + Q , o a k v ) .  t 
k 

Primes to the summation signs indicate that the summation is over the reduced Brillouin 
zone. We have introduced A = U(S , ) ,  Q = -2t(cosk,+cosky)-4t‘cosk,cosky, E: = 

step is the diagonalization of the quadratic form by a Bogolyubov transformation 
( € k + + ~ k + Q ~ ) / 2  - 4 t ’ ~ 0 ~ k ~ c o s k ~ ,  E r  ( E k - e k + Q o ) / 2 =  -2t(coskx+cosky). The next 

a k , ,  = ukckm + ‘Jkdkoak+Qo.o = s g n ( o ) ( u k d b  - ukckr). (3) 
Applying this transformation to ( Z ) ,  we observe that the first term with the density of 
quasiparticles, indeed, does not depend on uk and V k ,  because the transformation conserves 
the total density. The Bogolyubov coefficients then appear only in the last two terms which 
do not depend on t‘. As a result, the expressions for uk and uk remain the same as in the 
t’ = 0 model [12]: 

where E; = ,/-. 
After the hiagonalization, equation (2) takes the form 

~ M F  = ~ ‘ E ~ C ~ , , C k o  - E f d L d k ,  
k 

where 

E< = E; + 6; E~ =E;  - 6:. (6) 
For U >> t. which is implicit in our approach, we can expand under the square root and 
obtain Ec.d = A + J(cos kx + cos kV)’ 4t‘ cos kx cos ky, where J = 4tZ/U. We will refer 
to the quasiparticles described by c and d operators as conduction and valence fermions, 
respectively. At half filling, valence states are occupied and conduction states are empty. 
Accordingly, the self-consistency condition on (S,) takes a simple form 
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2.2. Finite density of holes 

We now discuss what happens at small but finite doping when the chemical potential moves 
into the valence band. First, we discuss the shape of the hole Fermi surface. As we said 
above, at f‘ = 0, the dispersion of valence fermions, equation (6), is degenerate along 
the boundary of the magnetic Brillouin zone (kz i ky = hn), where Ed = A.  This 
degeneracy, however, is not related to any kind of symmetry and is removed by self-energy 
corrections [15, 171, with the result that the actual band minima in the nearest-neighbour 
Hubbard model are at ( in/Z, fn/2). This agrees with the numerical [24, 20, U] and 
variational [26] studies of the Hubbard and t-J models. 

Our first observation for the t-[’-U model is that at finite t’, the degeneracy is removed 
at the mean-field level. Indeed, a simple inspection of equation (6) shows that the mean- 
field dispersion has a minimum at (-la/Z, h / 2 )  if t’ is negative and smaller than J .  For 
If’[ > J ,  the minimum of the hole dispersion is at k = (n, n) (or (0,O)). Finally, if f‘ is 
positive, which is probably not the case for cuprates, the minimum of Ed is at (n, 0) and 
symmetry-related points [ZO]. Now, for both 214 compounds, t‘ is negative and relatively 
small: It‘] - 0.07 eV. which is smaller than the exchange integral J - 0.13 eV [21,22,23]. 
Accordingly, we expect that upon doping, holes in La-based compounds form pockets 
around (n/2, n/2) and the symmetry-related points. Near (np, n/2), one can expand E; 
and obtain 
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wheremL = 1/4(J-]l’I), mll = 1/4lt’l. Notice that numerically, theeffects due tot‘, even 
for It‘/f I - 0.2. are likely to dominate over the effects due to self-energy corrections in the 
nearest-neighbour model. Thus, for t / J  = 2, the difference A E  = .Ed@, 0)-Ed(n/2, n/2) 
is AE = 4lf‘l - 0.8t due to f’ and about 0.25t due to quantum fluctuations as was obtained 
in the 1/S expansion for the Hubbard model [17] and in numerical [25] and variational [26] 
calculations for the r-J model. The same is also true for the inverse effective mass, l / m , l :  
for the same ratio t/J, the contribution to l/mll due to t’ is about four times larger than 
that due to quantum fluctuations. Also notice that for the parameters chosen for LaSrCuO, 
the two effective masses are roughly equal to each other, i.e., the Fermi surface near half 
filling is nearly circular. 

Consider now the electron-doped materials. Under electron doping, the chemical 
potential moves into the conduction band. The energy of a conduction fermion is 
EC = A + J(cosk, f cosk,)’ - 4f’cosk, cosk,, i.e. it effectively has the sign of 
t‘ reversed compared to the hole-doped materials. From the consideration above, we 
immediately conclude that the minimum of the electron dispersion is at (0, n) and the 
symmetry-related points. Expansion around the minima yields two equivalent effective 
masses m~ = mll = 1/4lt’l. 

Finally, consider the electron dispersion in the Y-based hole-doped materials. The spin 
dynamics of the overdoped 123 systems was studied in a number of papers by Levin, Si and 
co-authors [9]. They found that to fit the photoemission data for yBazCu3O.i [8], one needs 
f - 0.25-0.3 eV and a relatively large next-nearest-neighbour hopping term f’ - -0.5t [9]. 
The values of the hopping integrals very near half filling are not necessary the same as in 
YBazCuSO7 as the parameters of the effective one-band Hubbard model derived from the 
underlying three-band model generally depend on doping 1271. We however simply assume 
that the values off and f’ change little with decreasing oxygen content. In this situation, It’l 
is very close to J .  This implies that the mean-field hole dispersion (6) is nearly degenerate 
along k, = ky: the band minima at f = 0.3 eV is at (r, n), but the quasiparticle energy at 
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(a/2, n/2) is only 0.08 eV above. To lift the near degeneracy, we calculated the leading 
self-energy correction to the hole dispersion in the expansion over the inverse number of 
orbitals. The procedure is described in some length in our earlier publication 1171, and we 
do not discuss it here. We found that fluctuations stabilize the minima at (fn/2, &n/2)  up 
to much larger r' than in the mean-field theory. Specifically, the self-energy terms produce 
the energy difference AE - 0.88A (for 2 s  = I), where AE = E f x , x )  - E<,+,,q2>. For 
f = 0.3 eV, we have A = 4 t 2 ( S , ) / J  - 0.9 eV [28] and hence AE - 0.8 eV. This implies 
that the actual critical value of It'l above which pockets are located at (a, n), is about 
0.32 eV, which is substantially larger than It'] - 0.13-0.15 eV predicted for YEiaCuO. 

The hole pockets at ( fn/2,~+n/Z)  near half filling are consistent with the results of 
photoemission studies of the insulating YBazCu306.3 [29].  These studies have detected 
some spectral features which can be interpreted as the dispersion through the Fermi surface. 
but only close to the zone diagonal, i.e., near ( x / 2 .  nf2) .  Notice however that the closed 
Fermi surface near that point has not been restored experimentally. 

Another important point is that the critical value of t '  is indeed model dependent-in the 
Hubbard-model calculations we found that it is larger than the actual value in in YBaCuO, 
but, as we already mentioned in section 1. small-cluster calculations for the t-t'-J model 
found the minimum of hole dispersion at (n. n) for the same values of parameters as we 
used [5]. 

We further show how the different location of the pockets leads to a contrasting magnetic 
behaviour near half filling. ~~ 

2.3. Magnetic susceptibility 

In the SDW theory, the spin susceptibility is given by a ladder series of bubble diagrams 
(figure 1). One fermion in the bubble should be above the Fermi surface, and one below. 
At half filling, the only allowed combination is one fermion from the conduction and one 
from the valence band. Away from half filling, the Fermi level moves into the valence 
band, and there are also bubbles with two valence fermions. The SDW expression for the 
susceptibility has been derived earlier [12, 161, so we quote only the result. In the static 
case, the total transverse susceptibility x+-(q) is given by 

where 

Above we have assumed that the system has a commensurate magnetic order. This 
requires that the static spin susceptibility be non-negative for all momenta (or, in other words, 
that all bosonic frequencies be real). Of special interest is the region near q = Qo = ( x ,  n) 
as x - ' ( q )  turns to zero at (IC, a) in accordance with the Goldstone theorem. Near this 
point, the static susceptibility has the form [30] 
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t I t 

I I I 

Figure 1. The RPA series for the total static iransverse susceptibility. The first term represenis 
the simple bubble, which is the building block of the ladder. Solid and dashed lines denote 
valence and conduction fermions, respectively. At half filling, only bubbles which contain one 
valence and one conduction fermion contribute to transverse susceptibility. 

where No is the sublattice magnetization (= f in our mean-field approach), and ps is the 
spin stiffness which should be positive. 

Let us first consider half filling. Here only the first term contributes to XQ. Performing 
an expansion in (10) and substituting the result into (9). we obtain the ‘classical’ spin wave 
result 

Clearly then, the commensurate (n, x) state is stable at half filling as long as q‘?lt’[ < t .  
This condition, though it may be modified by quantum fluctuations, is apparently satisfied 
in the LaSrCuO, NdCeCuO and YBaCuO families. 

We further consider the situation away from half filling (6 # 0). Now we also have 
a contribution from the second term which involves only valence fermions. Expanding in 
this term around (n, n) and combining the result with (12), we obtain 

P m  = PS(O)(l - z )  (13) 
where ps(6 = 0) is given by (12), and z is 

At small concentration of holes, the condition E: < lpl implies that the fermion with 
momentum k is within the hole pocket. For La- and Y-based materials, these pockets are 
at (&n/2, &n/2) where the sin2 k factor in the numerator in (14) is approximately one. 
Accordingly, the summation over k yields the uniform Pauli susceptibility of free fermions, 
which in two spatial dimensions does not depend on the carrier concentration. Namely, for 
z we obtain 

For the case of (nj2, n/Z) pockets, [t’l < J, so that a scales as 1 j J .  In the mean- 
field theory, we also have Uee = U in which case z - U / J  is a large number, and the spin 
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stiffness immediately changes sign upon doping which means that the commensurate (n, n) 
antiferromagnetic state becomes unstable. In more sophisticated calculations however, Uef 
appears different from U because of the strong self-energy and vertex corrections in the 
la rge4  limit. In fact, the self-consistent solution for U,* yields Uefi - J at U >> t ,  and 
therefore z - O(1) [2, 31. 161. In any event, however, it is likely that z can be larger 
than one in which case the commensurate antiferromagnetic state is no longer stable. Note 
that in the mean-field approach we are using, this instability does not imply a disordering 
transition, but rather a transformation into an incommensurate spin configuration. The 
equilibrium configuration at z z 1 has been discussed in our separate publication [18]. 

We now turn to the~electron-doped systems. Here the hole pockets are formed around 
(0. n). Equations (13) and (14) are still,valid, but the numerator in (14) now vanishes right 
at the centre of the pocket. Elementw calculations then show that because of the sin'k 
factor in (14), z scales linearly with doping concentration, and hence at small doping, p s  
acquires only a small correction O(6). Clearly then, antiferromagnetism at (n, n) survives 
in the presence of a small density of electrons. This explains why Ndz-xCe,Cu04 remains 
commensurate all the way down to the paramagnetic phase. 

We now discuss the width of the magnetically ordered phase. Within the present mean- 
field (or 1arge-S) approach, the on-site magnetization is nearly equal to its nominal value, 
and the rapid decrease in the stiffness in the hole-doped 214 materials is not accompanied 
by a rapid decrease in the order parameter. In other words, the mean-field theory predicts 
that the system first becomes incommensurate and only then loses long-range order. There 
are, however, numerous experimental reasons to believe that the disordering transition at 
least in LaSrCuO is in the universality class of the non-linear sigma model, and has the 
dynamical exponent i = 1 [32] (the most direct evidence is the observed linear behaviour of 
the uniform susceptibility). This implies that in a more adequate model, the decrease in ps 
must eventually lead to a decrease in the sublattice,magnetization such that both quantities 
vanish simultaneously. This is what has been found by Sachdev [33] in the self-consistent 
l a r g e 4  study of the ShraimanSiggia model 121 in one range of the coupling-constant 
values. In another range, he found an incommensurate transition within the ordered phase 
as in our approach. It is essential, however, that the two scenarios differ primarily in the 
behaviour of the sublattice magnetization with doping, while the doping dependence of the 
spin stiffness is nearly the same in both cases. In particular, for all values of the coupling 
constant in the ShraimanSiggia model (where pockets are at (n/2, n/2)); the stiffness 
undergoes a rapid, nearly step-like, downturn renormalization under hole doping. We can, 
therefore, expect that the larger are the corrections to the stiffness at low doping (even if 
they are obtained in the large-S expansion, as in our approach) the smaller is the actual 
region of the magnetically ordered phase. If these arguments are accepted, then the width of 
magnetically ordered phpe  in NdCeCuO should be much larger than in LaSrCuO. This is 
consistent with the experimental observation that magnetic order in NdCeCuO survives up 
to much larger doping concentrations than that in LaSrCuO. A similar, though somewhat 
different, explanation of the difference of the magnetic phase diagrams of the two 214 
compounds, based on the idea of short-ranged local distortions in NdCeCuO and long- 
ranged distortions in LaSrCuO, was presented in [5 ] .  

Finally, we notice that if the actual ratio of t ' / t  is such that the pockets in YJ3aCuO at 
low doping are located at (n, n), then the corrections to the stiffness scale linearly with x 
for exactly the same reasons as in the electron-doped compounds, and the commensurate 
~(n. n) configuration survives the hole doping. 
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2.4. Phase separation 

In the SDW approach, we can also consider the stability of the (a, a )  phase at small doping 
against the formation of domain walls [34, 351. This stability requires the longitudinal spin 
susceptibility to be positive. For commensurate spin ordering, longitudinal spin fluctuations 
are always decoupled from transverse spin fluctuations, but at finite doping, they are coupled 
to charge fluctuations. The total static uniform susceptibility xzz can be obtained by 
straightforward manipulations starting from equations (52)-(.54) in [16]: 
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2% huli 

$5 I - 8 JxPauli - ,  (16) 

where x””” = ,,‘E35/2a is the Pauli-like susceptibility of doped carriers. If this 
susceptibility is larger than l /W,  the total longitudinal susceptibility becomes negative 
which signals the formation of domain walls. 

We calculated effective masses with self-energy corrections for all three types of 
materials and found that for It‘l - J / 2 ,  the tendency towards phase separation is nearly the 
same in the two 214 compounds (the Pauli susceptibility is slightly larger in LaSrCuO), but 
is much weaker in YBaCuO where the Pauli susceptibility is about two times smaller. At 
the same time, we found that the denominator in x Z L  is positive in 214 materials, i.e., there 
is a stability against domain wall formation immediately away from half filling. These 
results are consistent with the numerical analysis in [SI. This paper also pointed to the 
possibility of two-dimensional phase separation in the electron-doped materials which we 
have not studied. 

3. Conclusions 

To summarize, in this paper we presented simple calculations which show that the stability 
of the commensurate antiferromagnetic state in Matt-Hubbard insulators depends strongly 
on the location of the holelelectron pockets in the Brillouin zone. For LaSrCuO, we found 
pockets at (k.a/2, &a/2). The corrections to the antiferromagnetic spin stiffness from the 
occupied hole states within these pockets rapidly grow with the carrier concentration and 
are likely to make stiffness negative, i.e., destroy commensurate spin ordering, even at a 
very small doping. On the other hand, in NdCeCuO, we found that mobile electrons form 
packets at (0, x )  and the symmetry-related points, in which case the corrections to the 
stiffness scale linearly with the density of carriers and do not destroy the commensurate 
spin ordering. We argued that the different behaviour of stiffnesses is responsible for the 
experimentally observed difference in the widths of the magnetically ordered phases in the 
two 214 compounds. These results compliment the arguments and numerical analysis in 
[SI. 

We also, discussed the hole dispersion in YBaCuO and found that for the value of t‘ 
used to fit the photoemission data, band minima are likely to remain at (+n/2, zkx/2) 
though the quasiparticle energy at (a, a )  is only slightly larger. This implies that the 
magnetic properties of LaSrCuO and YBaCuO are identical very near half filling. On 
first glance, this result seems strange as the hole pockets at (n/2,  n/2) apparently lead 
to incommensurability which has been observed in neutron-scattering experiments only in 
LaSrCuO 16, IO]. However, these experiments were performed only deep in the metallic 
phase when the Fermi surface is large and, in the case of YBaCuO, crosses the Brillouin 
zone boundary thus giving rise to damping of spin waves into a particlehole continuum. As 
regards incommensurability in the ordered state, we recently considered [I81 the equilibrium 
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static spin configuration for z > 1 and found that it is not the planar spiral Shraiman-Siggia 
phase in which susceptibility is peaked at incommensurate momentum, but rather a non- 
coplanar configuration which very much resembles the (r, a )  state and differs from it only 
in the existence of a small transverse spiral component of the order parameter, SL - O(,h). 
For this configuration, the susceptibility still has a dominant peak at (n, n). In other words, 
the spin structure adjusts itself to a negative stiffness of the (ri. a )  state in such a way that 
the peak position of the susceptibility does not change as long as holes occupy pockets at 
(a/2,  n/2). Notice that this result is consistent with the RPA-like analysis by Si et al [9] 
in the metallic phase, as very close to the magnetic transition they found the maximum in 
the susceptibility at (x. a )  for both types of hole-doped material. The transformation of 
the hole Fermi surface with increasing doping content from small to large, and the related 
change in magnetic susceptibility, still has to be studied in detail. 
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